Wednesday, February 12, 2014

Our Fragile Emerging Megacities: A Focus on Resilience

The number of megacities is expected to double over the next decade, and many of these growing cities are far from resilient. The solution: frugal engineering and local knowledge.
Colin Crowley / flickr
Unless you have been hibernating, you have heard about urbanization trends and have spent time reflecting on what this might hold for the future of communities, cities, nations, and the planet as a whole. The world’s total urban area is expected to triple between 2000 and 2030—urban populations are set to double to around 4.9 billion in the same period. On average, the rate of urbanization in the developing world will be five times that of the developed world. Depending on the estimate, the number of megacities (i.e., cities with populations over 10 million) is expected to double over the next decade. Most of the growth in megacities is expected to occur in resource-poor and highly fragile regions of the globe. Cities with over 10 million inhabitants are emerging in Asia, South America, and Africa.
Presently, cities that are transitioning into megacities are far from resilient (seehere for my previous post on resilience). Many of them are highly fragile and unstable. When faced with crises and disruptions, whether they are due to natural, economic, or political factors, these environments are put under severe stress. They lack the capacity to respond to these stressors and often crumble under pressure. They also lack the ability to predict and plan for upcoming events. For example, Typhoon Haiyan struck the Philippines on November 8, 2013, resulting in untold devastation and the loss of 1,774 lives. Troops and aid agencies battled blocked roads, rubble, and debris to search for survivors. The Philippine government currently estimates that 2.5 million people are in need of food aid as a result of the crisis. Typhoons are extremely dangerous; this disaster could have been militated against by increasing the resiliency of coastal cities in the Philippines.
Unfortunately, even when faced with “normal operating conditions,” the physical, economic, and political infrastructures and processes of our future megacities cannot adequately deal with the loads placed on them. Emerging megacities generally have large youth populations that are frustrated with the status-quo. Issues such as immigration and inequality in wealth and economic opportunities tend to fuel and prolong insecurity. We witnessed these dynamics playing out in the Middle East during the “Arab Spring” and today we get to see it live in Kiev, Ukraine.
The World Health Organization (WHO) estimates that one billion people live in urban slums; 170 million people do not have access to bathroom facilities, and nearly 1.2 million people have died from air pollution in China. Such tenuous conditions in urbanized areas are met with more demands for public services and stronger governance. The McKinsey Global Institute estimates that by the year 2030, there will be 68 Indian cities of more than a million people, 13 with more than 4 million, and six megacities with populations of 10 million or more. More than 30 million people will live in Mumbai and 26 million in Delhi. This unprecedented growth directly effects development, growth, and support for public institutions. In India, inefficient governance systems and fragile infrastructure will be put under greater strain as a result of the impending population explosion.India’s bureaucratic system is the one of worst in the world. Excessive red tape, “fickle” regulations, and the willingness of India’s bureaucrats to accept bribes have a devastating impact on the efficiency and effectiveness of government. Transportation gridlocks, mass shortages of drinking water and food, burgeoning population that lives below the poverty line in slums, and the failure of public institutions are just some of the calamities that result from such conditions. Mumbai and Delhi are projected to need one trillion dollars in infrastructural improvements to effectively manage population growth.
By 2015 there will be 33 megacities, 27 of which will be in the developing world, where the population explosion is challenging already fragile infrastructures. Megacities create record quantities of human waste and wastewater, adding to the strain on sanitation services. About two-fifths of the world’s population does not have access to adequate sanitation. Dhaka has a population of 15 million and is one of Asia’s fastest growing cities. Nearly two-thirds of Dhaka's sewage is untreated and left to leak into waterways and the ground. Waste is dumped directly in waterways. The few public toilets that exist are neglected and extremely unhygienic. Unsurprisingly, tens of thousands Bangladeshi people die of cholera, diarrhea, dysentery, typhoid, and other waterborne diseases each year.
Open water in Dhaka slumDhaka faces poor sewage sanitation, waterborne diseases. Image via Flickr bySuSanA Secretariat
We face a dire situation if we do not find ways to increase the capacity for resilience in our megacities. Our de-facto model is not sufficient—when a major crisis (e.g., earthquake, flood, political unrest, etc.) hits a megacity in the developing world, the developing world and NGOs respond by flooding it with personnel, supplies, and resources to deal with the aftermath. As soon as the immediate response and recovery is complete, the various organizations begin to exit. The local environment goes back to a state of fragility, and we wait for the next disaster, only to respond again, and again, and again. Not only is this model ineffective, it is also inefficient. Billions are spent to deal with an event in the near-term with limited investment and thought into making lasting interventions that either 1) lower the chances for the environment to face similar shocks going into the future or 2) increase the adaptive and resilience capacity of the local environment, people, processes, infrastructure, and governance systems to handle extreme events in the future.
Regardless of whether you live in the developed or developing world, none of us are going to be to immune to the effects of extreme events that take place in one part of the globe. The planet is nondiscriminatory. We are all connected and interdependent, and our level of connectivity and interdependencies is intensifying. Cities in the developing world cannot afford expensive technologies. They do not have infrastructure at a level of maturity where traditional solutions make sense. Many cities lack basic infrastructure and resources necessary for basic survival needs and cannot invest the time, energy, or resources to purchase and implement glamorous technological solutions being sold. These innovations are not what these cities need. These cities need a sustainable capacity to develop innovations using their own internal resources and capabilities given their economic, political, and infrastructure realities.
Frugal Engineering + Leveraging Local Knowledge = Resilience
We need to build a resilience capacity from within these difficult environments—to this end we need to focus on frugal engineering and leveraging local knowledge. Frugal engineering is a new method of development that assesses the needs of the market as well as what the market can spend to respond to growing demands and tighter budgets. Through the “Reinventing the Toilet Challenge,” a grant program from the Bill and Melinda Gates Foundation, California Institute of Technology Professor Michael Hoffman and his team invented a solar-powered toilet that can safely dispose human waste for five cents a day. The toilet uses sun to power an electrochemical reactor that breaks human and water waste down into fertilizer and hydrogen, which is then stored in hydrogen fuel cells and used as energy. The toilet systems do not use septic systems or outside water sources, so once the water is treated, it is reused to flush the toilet or for irrigation. Other winners of the challenge invented toilets that produce biological charcoal, minerals, and clean water and other toilets that sanitize feces and urine. The utmost concern of frugal engineers is to meet the functional needs of the consumer. Robust products that can stand up to erratic supplies of electricity and harsh environments are needed. Mobile phone provider Nokia, for instance, knew that low-income agricultural workers were increasingly investing in cell phones. Researchers at Nokia noticed that phones were harder to use outdoors due to humidity and dust. Frugal engineers developed phones that could resist damage from dust and arid climates and removed “fancy” features from the phone—only phone calling and text messaging capabilities were included. These are good examples of frugal engineering. But we need more than frugal engineering. We need the ability to mobilize and leverage local knowledge to empower residents to build resilience solutions.
A focus on indigenous knowledge is important for creating solutions that make sense within emerging economies. SABMiller produced just such an example by developing beer made from cassava and sorghum crops to market and sell in Africa. Through the use of locally-sourced materials, the company makes an affordable high-quality product for those who would otherwise be drinking informal or illicit alcohol. Indigenous knowledge is essential for survival among the rural poor. Indigenous knowledge evolves throughout communities and cultures as natives are forced to cope with the various stresses and challenges around them. Globalization and modernization brings with it many important developments but can also systematically silence indigenous knowledge.
Frugal engineers in India had the need to construct affordable refrigerators that could withstand likely power outages in rural India and have a significant amount of portability for a very mobile population. India’s Godrej Appliances created a small, portable refrigerator called the ChotuKool. Significantly defeaturing a conventional refrigerator by removing unnecessary features, the ChotuKool has no compressor—instead it has a cooling chip and fan that can run on a battery to aid in power outages. In contrast to a normal sized refrigerator, the ChotuKool has 20 pieces instead of the 200 plus needed operate a conventional refrigerator and is priced at $55.
Frugal engineers have to contend with infrastructure gaps that make traditional development of products and services challenging. Using leapfrog technology, engineers are adopting their technologies to unreliable or nonexistent infrastructure. For instance, the Indian mobile phone industry has managed to make mobile phones widely available despite limited, fixed-line infrastructure. India is the world’s second largest mobile market, with approximately 900 million mobile connections. Mobile broadband adoption in India is set to significantly expand over the next five years, from about 35 million mobile broadband connections to a potential 400 million mobile broadband connections by the end of 2017. 
Frugally engineered products have low variability and have a one-size fits all principle to keep costs down. When selling identical products, efficient service eco-systems are necessary to support the needs of consumers such as repair and financing. For instance, Selco produced simple, low-cost systems that combine solar panels and storage batteries. Selco’s lighting system has been installed in 100,000 homes in rural southern India and costs around 10,000 rupees ($200 USD). Because most rural Indians could not afford to pay for the systems upfront, Selco assembled an aggressive financing package with rural banks that provided financing to 85% of their customers. Additionally, service support personnel visited customers every three months during the first year to collect batteries for recycling and to check the systems functioning, creating a network that supports the product as well as the consumer.
While the most successful cases of frugal innovation have happened in India, other countries are starting to make similar innovations. German technology company Siemens’ SMART (simple, maintenance-friendly, affordable, reliable, and timely-to-market) product portfolio aims to develop devices 40-60% cheaperthan the cost of the usual available devices in the market. Siemens developed a Fetal Heart Monitor that used a cheaper microphone technology instead of costly ultrasound technology. A Chinese company, Haier, introduced the Mini Magical Child, a washing machine alternative to large, expensive washing machines. In Kenya, millions of residents rely on M-PESA, a service that enables them to save, spend, and transfer money using their cell phones without having a bank account.
A client uses SAfrica Standard BankUsers learn how to use South Africa's Standard Bank on their mobile phone. Image by Mike Hutchings/Reuters.
Crowdsourcing platforms bring together the concepts of frugal engineering and local knowledge. Using a creative approach to problem solving, Spatial Collective and Map Kibera—a company and a nonprofit, respectively—have begun to map Kenya’s mega-slum, Kibera. The problem both organizations are working to solve is the notoriously unreliable and inaccurate nature of maps in many areas of Africa. Maps are oftentimes obsolete and do not reflect recent changes. Additionally, common footpaths are not recognized on maps leading Africans to use informal landmarks such as bars or gas stations to navigate the landscape. That condition is worse in slums, where many areas are displayed as blank expanses on international maps such as Google Maps. Using a crowdsourcing approach, locals were invited to add landmarks such as schools, pharmacies, bars, and water taps to an open source map through the Internet, SMS messaging, or by attending community workshops. Spatial Collective then created maps using the crowdsourced information and official data. Map data has provided viable locations to build new public toilets, and community-reported crime data helped World Bank officials decide where to place street lamps for safety. With each problem solved, the maps are helping to make the Kibera safer and more livable for residents.
Emerging Megacities and Resilience
To build a smart and resilient planet, we must focus on the challenges and opportunities in our future megacities. Frugal engineering is not charity; it should make sense in the market. Although frugal innovation assists the economically poor, innovations are made to be sold. Given the resource constraints associated with frugal innovations, a business model is necessary to succeed. Unless a viable business model exists the innovation will not be scalable or even sustainable in the long-run. The private sector has a critical role to play in ensuring that we build a capacity for resilience in our future megacities. As the examples above have shown, opportunities based on frugal innovation and tapping into local knowledge and expertise of the populous is crucial towards getting the private sector to contribute. Removing the wasteful or unnecessary aspects of products or services drives frugal innovations. Frugal innovations also create other important advancements for developing countries such as institutional and social advancements.
When a frugal innovation is developed, value is not just created from that innovation; it is also adding value to society’s institutional and social standing. Consider the innovations created for the aforementioned “Reinventing the Toilet Challenge,” for instance. If taken to scale and deployed nationally and/or internationally, the most immediate impact would be the amount of adequate toilet facilities people would have access to. In addition to the most immediate value, other institutional value such as the country’s public health system, sanitation system and sustainability would all be affected by this new innovation. Socially, the value to society would include improved health outcomes, more opportunities for sustainability and more time not concerned with sanitation concerns to spend on personal and community needs. Ultimately, I believe that solutions generated by leveraging local knowledge in a manner that makes sense to the local context has a better chance of increasing resilience, economic vitality, and the quality of live in our fragile megacities than brute-force importing of solutions from the developed world.
An important aspect of frugal innovation is that it doesn’t wait for markets to fit the particular model innovators have in mind; instead it adapts to the realities of society and the market. In a time when many large companies are shying away from entering emerging markets due to instability and corruption, frugal innovations that are developed with the local consumer in mind are helping to make developing countries more resilient. By not waiting for the optimum circumstances and working to serve the consumer directly with what’s available, frugal engineering is placing development in the forefront and creating new options for megacities to grow on.
Kevin C. Desouza is the Associate Dean for Research in the College of Public Programs; an Associate Professor in the School of Public Affairs; and the Interim Director for the Decision Theater in the Office of Knowledge Enterprise Development at Arizona State University. His research interests are in the areas of information and knowledge management, innovation systems, and strategic management of information systems. For more information, please visit He can be reached via email

Tuesday, February 11, 2014

An Introduction to Climate Change

by Wissam Yassine
Climate change refers to the current changes in the Earth’s climate patterns due to the increase in greenhouse gases emitted by human activities. The driving force behind this pattern is an increase in the Earth’s surface and water temperature. In fact, over the last 130 years, the global average temperature of the planet rose by 0.8 °C.  However, the impacts of this temperature increase on climate patterns in different regions varied widely (Figure 1).
National scientific bodies in all major countries agree that the cause behind global warming and climate change is the increasing concentration of greenhouse gases in the atmosphere due to human activities such as burning fossil fuels, deforestation, and growing livestock. Climate models have been created to forecast the expected increase in the average global temperatures over the coming years based on current and expected emission levels. These models show that the global average temperatures are expected to rise by up to 6 °C by 2100 if greenhouse gas emissions continue to rise as they have in recent decades.

Figure 1: Global surface temperature change according to NASA’s Goddard Institute for Space Studies data. Source: Dr. Peter Gleick, Forbes Blogs
This increase in global temperature will have far-reaching impacts, including an increase in sea level which will threaten coastal and low lying areas, disruption of precipitation patterns around the world, and an increase in the frequency of extreme weather events and heat waves. These impacts will lead to further downstream consequences including species extinction, loss of ecosystems, and the loss of small island states.
This article will shed some light on the science behind climate change and its expected impacts. The article will also highlight global and local action taken to mitigate climate change. Future features in the Road to Doha project will focus on climate change in the context of the Middle East and North Africa, and will detail the specific impacts on the region, its role is mitigating climate change, and adaptation opportunities.
The science of Climate Change
Following years of research, the entire body of climate scientists is almost in complete agreement that global climate change is happening, that it is caused by the increase concentration of greenhouse gases in the atmosphere, and that human induced (or anthropogenic) emissions are the largest contributor to this phenomenon.
Greenhouse gases (GHGs) are a group of gases that are characterized by their ability to trap radiation as it attempts to leave the earth’s atmosphere. The main GHGs in the Earth’s atmosphere are water vapor, carbon dioxide, methane, nitrous oxide, and ozone. Normally, these gases play a positive role in regulating the surface temperature of the planet and making it livable. It is estimated that without these gases our earth would, on average, be 33 °C cooler (Figure 2). However, the increased concentration of these gases caused mainly by burning of fossil fuels is amplifying the natural warming effect and leading to an observed increase in global temperature.

Figure 2: The Greenhouse effect by the National Academy of Science. Source: the Pew Center on Global Climate Change
Greenhouse gases vary in their capacity to absorb energy in the atmosphere, also known as their global warming potential (GWP). While one molecule of carbon dioxide (CO2), the predominant of all GHGs, has a global warming potential of 1 GWP, other gases have a much higher global warming potential.  A molecule of methane, example, has a GWP of 72 over 20 years, while a molecule of nitrous oxide has a GWP of 289 over the same period. Yet given the enormous quantities of carbon dioxide emitted into the atmosphere, its overall warming contribution is far greater than any other GHG. As a result, most estimates of GHGs are aggregated and expressed as carbon dioxide equivalents (CO2e ) to ease comparisons and put numbers in perspective. It is estimated that the concentration of carbon dioxide equivalents in the atmosphere have increased from their pre-industrial average of 280 particles per million (ppm) to more than 390 ppm today.
Based on this historic trend and on climate models, scientists have confirmed that the extent of future increases in earth’s surface temperature would be dependent on the rate of human-induced emissions, which, in turn, is dependent on the size of the global population and its carbon footprint. The most comprehensive forecast of climate change and global warming to date is the 2007 Fourth Assessment Report by the UN Intergovernmental Panel on Climate Change (IPCC). The IPCC models, based on various emissions scenarios and feedback mechanisms,  predicts that in the lowest emissions scenario for 2100 (Scenario B1 in Figure 3) the global surface temperatures will rise between 1.1 to 2.9 °C (2 to 5.2 °F) This scenario assumes  “a convergent world with the same global population as in the A1 storyline but with rapid changes in economic structures toward a service and information economy, with reductions in materials intensity, and the introduction of clean and resource-efficient technologies.”

Figure 3. Surface temperature increase scenarios. Source: IPCC Fourth Assessment Report: Climate Change 2007 , Chapter 10, Figure 10.26
The IPCC models also predict an increase of global surface temperature between 2.4 and 6.4 °C (4.3 to 11.5 °F) for the highest emissions scenario (Scenario A1F1 in Figure 3) which assumes “a very rapid economic growth, low population growth and rapid introduction of new and more efficient technology. Major underlying themes are economic and cultural convergence and capacity building, with a substantial reduction in regional differences in per capita income. In this world, people pursue personal wealth rather than environmental quality.”
With both the worst case and the best case scenarios forecasting a temperature increase, scientists have confirmed that some form of climate change is inevitable. They argued, however, that we need to limit the increase in global surface temperature to 2°C to avoid the worst of climate change. To ensure this, the world needs to collectively halve its 1990 emissions levels by the year 2050. This target appears hard to achieve given that total GHGs emissions have continued to increase since 1990. In fact GHGs emissions have increased in 2010 by a record amount that they surpassed even the worst case scenario of the IPCC report. This trend is currently not showing any signs of a slowdown, let alone reversal. In addition, the cumulative impact of current national pledges to cut carbon emissions fall short of stopping an increase in GHG emissions by 2050, let alone cutting it by any factor (Figure 4).

Figure 4: GHG emissions scenarios. Source: Climate Action Tracker
Furthermore, while climate change is a global challenge that requires a global response, total GHG emissions are not produced uniformly around the world, with 85% of emissions produced by the 20 largest emitting countries. This disparity in responsibility has inevitably led to friction between nations that are most responsible for climate change and those which are most affected by its impacts.
To complicate things further, nations also vary greatly in their per capita emissions. China, for example, is the world’s largest emitter in absolute terms since it overtook the United States in 2006. However, on a per capita basis, China ranks much lower than the US which has one of the highest per capita emissions rates. In the Middle East, this variation is also evident. Qatar for example leads the region -and the world- with 53.47 tons of CO2e per capita per year compared to a world’s average per capita emissions of just above 5 tons. Morocco on the other hand emits a mere 1.5 tons CO2e per capita in the same period.  Halving the world’s GHG emissions requires achieving a world average per capita carbon footprint of approximately 2 tons CO2e.
Impacts of Climate Change
For one to develop a strategy for adapting to climate change, it’s important to understand the complex and intertwining impacts of global warming.
It is estimated that increases in sea temperature will cause thermal expansion of the world’s oceans and seas. This expansion, coupled with melted land-based ice, will lead to a rise in sea levels. It is estimated that sea levels have already risen by 0.17 meters over the last century and are expected to rise further by 0.18 to 0.59 meters by the year 2100. A sea level rise of such magnitude is expected to put many cities and islands under water and to displace millions around the world.
Climate change is also expected to contribute to an increased frequency and intensity of extreme weather events such as hurricanes, flood, droughts and heavy participation events. Many of these events are already being observed around the world. Events such as the heat waves in Russia, extreme cooling in Europe, hurricanes in the US, floods in Pakistan, and draught in the African horn have been linked to the impacts of climate change.
Climate change is also expected to lead to adverse ecological and socio-economic impacts such as reduced agricultural production and food security, risks to human health, and reduced biodiversity. Changes to participation patterns will lead to severe water shortage in some areas and heavy floods in others. Rising temperatures will also increase the risk of diseases such as malaria as more areas become prone to such diseases.
It must be said that the exact extent of these impacts cannot be accurately forecasted and will eventually depend on the actual level of warming, the interactions between the various climate systems, and the responsiveness of ecosystems to such relatively fast climate changes (Figure 5). Yet, even the currently observed impacts are serious enough to warrant a global action to mitigate climate change and avoid irreversible large scale disruptions to the Earth’s natural systems.

Figure 5: Interconnection of climate system, human activities, and climate change impacts. Source: United Nations Environmental Program
The politics of Climate Change
International efforts to mitigate climate change started at the Earth Summit in Rio de Janeiro in 1992. The Earth Summit resulted in the signing of the United Nations Framework Convention on Climate Change (UNFCCC), which now has 195 parties. The objective of the UNFCCC is to “stabilize greenhouse gas concentrations in the atmosphere at a level that would prevent dangerous anthropogenic interference with the climate system.”
Since then, major breakthroughs in climate negotiations took place and major commitments were made, the most significant of which is the Kyoto protocol which was negotiated in 1997 and entered into force in 2005 (figure 6). Recognizing the wide difference in historical GHG emissions across countries, parties to the Kyoto protocol agreed that they had “common but differentiated responsibilities” towards reducing their GHG emissions.  In that spirit, developed countries agreed to reduce their emissions by an average of 5.2% below 1990 levels by 2008-2012, the first commitment period under the Kyoto protocol.

Figure 6: Timeline showing major milestones in international climate change negotiations. Source: the Pew Center on Global Climate Change
The Kyoto protocol was a major step forward; however, the 37 developed countries with binding reduction targets under the Kyoto protocol represented only 25% of the world’s global emissions. It was clear that the world needed a new treaty that included developing countries such China, India, and Brazil, whose shares of global emissions grew significantly since the Kyoto Protocol was negotiated, as well as major players such as the United States which was not party to the Kyoto Protocol.
In 2005, parties to the Kyoto protocol together with the United States agreed in Montreal to start negotiating a post-2012 emissions reduction commitment with the aim of reaching an agreement in Copenhagen in 2009. However, the outcome of Copenhagen was a true disappointment as the United States succeeded in steering the negotiations away from a legally binding emissions reduction commitment. The alternative was the Copenhagen Accord, which calls on developed countries to commit to “economy-wide emissions targets for 2020”. The targets were discretionary and non-binding, which is why the 15th Conference of Parties (COP 15) in Copenhagen was largely seen as a step backwards in climate negotiations.
However, the notion of a binding emissions reduction treaty that covers all countries – developed and developing – was revived two years later in Durban’s COP 17. The 2011 conference ended a very intense and politically polarized round of negotiations with countries agreeing on reaching a legally binding agreement by 2015 which would take effect after 2020. The outcome of Durban’s COP 17 places great expectations on COP 18 in Doha which will host the first round of negotiations dedicated toward reaching the 2015 agreement.
With such high hopes for event, it is our hope that the Road to Doha project by Carboun would help highlight the significance of hosting these negotiations in the region, in addition to helping build awareness of climate change impacts on the Middle East and the challenges they pose for the region.
Wissam Yassine is a Senior Sustainability Engineer based in Dubai and a Masters in Sustainability candidate at Harvard University Extension School. He can be contacted at Wissam [at] Carboun [dot] com